If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+(x^2)=378
We move all terms to the left:
x+(x^2)-(378)=0
determiningTheFunctionDomain x^2+x-378=0
a = 1; b = 1; c = -378;
Δ = b2-4ac
Δ = 12-4·1·(-378)
Δ = 1513
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1513}}{2*1}=\frac{-1-\sqrt{1513}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1513}}{2*1}=\frac{-1+\sqrt{1513}}{2} $
| (2l)^2+l^2=17^2 | | 2x+20=3x+1 | | 1/8x=1/4= | | 0.3+0.2x=0.6x-1.3 | | 4y=38+2y+8 | | 7t-t-8=5t-8= | | (49x^2+28x+4)/(7x-3)=0 | | 13+7/9y=12 | | 4(2a-8)=1/7(49+70) | | 4v=-8(1/2v-1 | | 6(w^2-13)(w^2+10)=0 | | 2(x+2)=8(x-4) | | 5x+9+4x=3x-15 | | 40-4x=-5(4x+3)-5(-8-3x) | | 1/3v=-2/3(1/2v-1) | | 8-⅜k=-4 | | x/4x-1=2/9 | | |-4+5x|=6 | | 12x-3=7x-18 | | 4n-40=7(-2n+5) | | -(6x+3)+17=-16 | | 2/5w-4=7/5w | | 5/6=10÷x+5 | | 67=(9/5)x+32 | | 3m³+7=301 | | 67=9/5x+32 | | 7+4p=-8+11 | | -3(k-5)=-12 | | -6x+1=-3x-3 | | 1/3(x-5)+5/6(x+2)=x+1 | | 17x-3(2x-9)=6- | | -6x+13+7x=6+2x+7 |